
Partial Solution Set, Leon §4.3

4.3.2 Let [u1,u2] and [v1,v2] be ordered bases for R2, where u1 = (1, 1)T , u2 = (−1, 1)T ,
v1 = (2, 1)T , and v2 = (1, 0)T . Let L be the linear transformation defined by L(x) =
(−x1, x2)

T , and let B be the matrix representing L with respect to [u1,u2]. {Note:
B was actually part of problem 1 in this chapter. As usual, the first column of B is
[L(u1)]U = (0, 1)T , and the second column of B is [L(u)2]U = (1, 0)T .}

(a) Find the transition matrix S corresponding to the change of basis from [u1,u2] to
[v1,v2].

Solution: The transition matrix in question is the one I’ve been calling TUV , i.e.,

S = V −1U =

[
0 1
1 −2

] [
1 −1
1 1

]
=

[
1 1

−1 −3

]
.

(b) Find the matrix A representing L with respect to [v1,v2] by computing A = SBS−1.

Solution: First we find S−1 =
1

2

[
3 1

−1 −1

]
. Then it is a simple matter to

determine that A = SBS−1 =

[
1 0

−4 −1

]
.

4.3.3 Let L be the linear transformation on R3 given by

L(x) = (2x1 − x2 − x3, 2x2 − x1 − x3, 2x3 − x1 − x2)
T ,

and let A be the matrix representing L with respect to the standard basis for R3. If
u1 = (1, 1, 0)T , u2 = (1, 0, 1)T , and u3 = (0, 1, 1)T , then [u1,u2,u3] is an ordered basis
for R3.

(a) Find the transition matrix U corresponding to the change of basis from [u1,u2,u3]
to the standard basis.

(b) Determine the matrix B representing L with respect to [u1,u2,u3].

Solution:

(a) This is simply U =

 1 1 0
1 0 1
0 1 1

 .

(b) Somewhat surprisingly, B = U−1AU = A. An interesting sidelight: this means that
UA = AU , i.e., we have an instance of a commuting pair of matrices.



4.3.4 Let L be the linear operator mapping R3 into R3 defined by L(x) = Ax, where A = 3 −1 −2
2 0 −2
2 −1 −1

 . Let v1 = (1, 1, 1)T , v2 = (1, 2, 0)T , and v3 = (0,−2, 1)T . Find the

transition matrix V corresponding to a change of basis from [v1,v2,v3] to the standard
basis, and use it to determine the matrix B representing L with respect to [v1,v2,v3].

Solution: The transition matrix is V =

 1 1 0
1 2 −2
1 0 1

 . We want

B = V −1AV =

 −2 1 2
3 −1 −2
2 −1 −1


 3 −1 −2

2 0 −2
2 −1 −1


 1 1 0

1 2 −2
1 0 1

 =

 0 0 0
0 1 0
0 0 1

 .

4.3.5 Let L be the linear operator on P3 defined by

L(p(x)) = xp′(x)” + p′′(x).

(a) Find the matrix A representing L with respect to [1, x, x2].

(b) Find the matrix B representing L with respect to [1, x, 1 + x2].

(c) Find the matrix S such that B = S−1AS.

(d) Given p(x) = a0 + a1x + x2(1 + x2), find Ln(p(x)).

Solution:

(a) We start by applying L to the basis vectors: L(1) = 0, L(x) = x, and L(x2) = 2x2 +

2. The corresponding coordinate vectors become the columns of A =

 0 0 2
0 1 0
0 0 2

 .

(b) The coordinate vectors for 1 and x are unchanged, but the coordinate vector for

2x2 + 2 is now (0, 0, 2)T , so B =

 0 0 0
0 1 0
0 0 2

 .

(c) The change of basis matrix has for its columns the coordinate vectors of the basis

from part (b): S =

 1 0 1
0 1 0
0 0 1

 .

(d) The coordinate vector of p(x) is (a0, a1, a2)
T . The nth power of B is simple to

compute because of the simple diagonal structure of B; Bn =

 0 0 0
0 1 0
0 0 2n

 . It
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follows that the coordinate vector for Ln(p(x)) is Bn(a0, a1, a2)
T = (0, a1, 2

na2), so
Ln(p(x)) = a1x + 2na2(1 + x2).

4.3.8 Suppose that A = SΛS−1, where Λ is a diagonal matrix with main diagonal λ1, λ2, . . . , λn.

(a) Show that Asi = λisi for each 1 ≤ i ≤ n.

(b) Show that if x =
n∑

i=1

αisi, then Akx =
n∑

i=1

αiλ
k
i si.

(c) Suppose that |λi| < 1 for each 1 ≤ i ≤ n. What happens to Akx as k →∞?

Solution:

(a) For any choice of i, 1 ≤ i ≤ n, we have

Asi =
(
SΛS−1

)
si

= SΛ
(
S−1si

)
= SΛei

= S (Λei)

= Sλiei

= λiSei

= λisi.

(b) This is easily proven by induction: A0x = x =
n∑

i=1

αisi.

Assume that Akx =
n∑

i=1

αiλ
k
i si for some k ∈ N. Then

Ak+1x = AAkx

= A
n∑

i=1

αiλ
k
i si

=
n∑

i=1

Aαiλ
k
i si

=
n∑

i=1

αiλ
k
i Asi

=
n∑

i=1

αiλ
k
i λisi

=
n∑

i=1

αiλ
k+1
i si,

and the result follows by induction. 2
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(c) Each term in the preceding sum vanishes, since if |λ| < 1 then lim
k→∞

λk = 0.

4.3.9 Suppose that A = ST , where S is nonsingular. Let B = TS. Show that B is similar to
A.

Proof: Assume that A is as described, i.e., that A = ST and that S is nonsingular.
Then

B = TS = (S−1S)TS = S−1(ST )S = S−1AS,

so B is similar to A. 2

What’s the point? Given any square S and T , with at least one of the two nonsingular,
we know that it’s unlikely that ST = TS. But at least ST and TS are similar. And that
(as we shall see) means that they have much in common (eigenvalues, for example).

4.3.10 Let A and B be n × n matrices. Show that if A is similar to B, then there exist n × n
matrices S and T , with S nonsingular, such that A = ST and B = TS.

Solution: Well, at least a hint. Note that we are proving the converse of (9). This is
perhaps easier than it initially seems. Assume that A is similar to B. You may then
write B in terms of A and another (nonsingular) matrix S, right? Do so. Now what?
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